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In our previous studies (cf. Part I and the literature referred to there; also
[28]) we derived a criterion for radial multipliers in connection with Riesz-
bounded spectral measures. The present paper is concerned with extensions
of the theory covering multipliers which are not necessarily radial. We shall
restrict the discussion to one-dimensional Fourier transforms (and
coefficients). Nevertheless, it would be possible to present these extensions
in the general Banach space-frame of Part I. Indeed, the procedure will be
quite the same, exploiting the fact that the family of (Riesz means-) operators
{(R, a),},0 (cf. Part I (3.1); this paper (6.1)) may be considered as a test set
for certain multiplier criteria.

6.1. MuLTipLiER CRITERIA

The situation is that of Section 5.2 for 1 == 1, i.e., we deal with functions

fe L7(R), 1 < p =0 oo, and their Riesz means of order «

(R, ), ) = @) | J(v = 1) ph(pu) it == pbafp ) + ), 6.1)

* This paper is a sequel to one with the same title published in this journal Vol. 8,
pp. 335-356. The contents (and notations) of the first part are assumed to be known.
References are in alphabetical order in each paper; they, as well as the sections, are
numbered consccutively throughout this series. The contribution of W. Trebels was
supported by DFG-Grant Bu 166/23.
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24 NESSEL AND TREBELS
where b, is given by its (distributional) Fourier transform

b (r) == )(l 0‘ e 1 i : . PN) = (2m)! ‘ ' du)e= v du.

(Note that in comparison with (3.1) we change the notation and write
r. — b,”.) Then it is well known that b, € L'(R) for each « > 0. From this
we shall derive sufficient criterta for functions A(¢) on R to belong to [LY{R)]",
the set of L'-transforms.

In fact, the case A being an even function, i.e., A(r) AG ¢ ), is already
covered by our previous results.

THEOREM 6.1, Let Av) e C\(R) be even. If' Xe BV, | (¢f- Part 1, (3.3),
this paper (6.3)) for some « - 0, then A(r) < [LY{R)]".

Next we consider odd functions A, re., Ar) = {sgn ¢} A v{). where
sgne - -1 fore < 0, =0 fore 0, and -] forr = 0. Here we make use
of the following property of the Riesz kernel.

Lemma 6.1 Setring {sgn v}l v {°h,"(v) — b z(v) one has b, ,c LYR) for
each o = 0, 8 = 0.
Proof. By Theorem 6.1 | v 2 b (¢) = [—bl]"(v) € [L']". Therefore,

Th(x = 31) = 3by(x b 1) - 3b(x o~ 1) - bdx - 3t)y = V20210 .

For some fixed 0 << 5 << 2 this implies that
Jod) = [T 30 b0 0 3 D b - 30]dr,

is Cauchy for € - » 0-y . Hence there exists f; ¢ L! such that

“”l i/ci fu [ -= 0.
=04
HOWCVCI’,

Jv) = ' Y Aet = ety de - b (),
which implies f;~(v) := Cy{—isgnuvj;v #b,7(r) with some counstant Cj.
Now the proof for arbitrary 8 > 0 is immediate. Indeed, with C=(R) the
set of infinitely differentiable functions on R, let (cf. Part I, Section 4.2)

x € C=(R) even with y(z) =1 for |ei =1, =0for v =2. (6.2)

1 Of course, here and in the following the restriction of A to (0, 2¢) is meant in connection
with the moment spaces BV .
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Then | oY x(v) € [L'}" for each y > 0 by Theorem 6.1, and the proof is
complete.

Let us observe that b, ,(x) = i(D¥*h,)~(x), the Hilbert transform of the
Bth Riesz derivative of b, (cf. [27, Chapter XI]).

In connection with odd functions it is appropriate to consider the following
modification of the class BV, (cf. Part I (3.3)) for o, w, ¢ 2= 0

BV = A1) € Cy(0, 30): t=°A(t) € BV, (6.3)

with norm | /\;jBijj = t*“z\(z)ﬂ,w::l, where (cf. [28])

BV == A1) € G0, 00): A, A6~ & ACiy, (0, o0), A & BVjoq (0, o0).

P B ’ prel dAy < !

‘BV:f,.l F(’X o l T (,U) o (64)

J

For the notations see Section 3 (Part ]), in particular, for y = ~ — [«],
[«] being the largest integer <Z~, and C,(0, o0), the set of continuous functions
A1) on (0, oo) with lim,. ., A(7) == 0. Note that BV, C BV, in the sense
of continuous embedding for all 0 =2 8 =<C o, w 2= 0, and that for any
Ae BV?,, a, w =0, one has

0 = [0 e, (©5)

(cf. [28], also Part I (3.5)). Moreover, A € BV implies

LMy = 0 I XO s (p = O (6.6)

aifl

so that BV, {-norms are invariant with respect to dilations. This is important
in connection with uniform bounds for multipliers of Fejér’s type (i.e.,

A0 = Ntlp)).

THEOREM 6.2. Let Av) e Cy(R) be odd. If Xe BV for some o > 0,
o > 0, then Av) € [LY(R)]".

Proof. Setting A,(t) = r—°A(r) and

o(x) = L‘i)[ - f 1>+ th, (1x)] dAP(2),

then ¢ e L' by Lemma 6.1; in fact, [[glh < Ao, buolhll Allsves-
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Moreover, by Fubini’s theorem (cf. this paper (6.5))

o™ (1) - ,(;;1)}}};1 ‘14 Yoy . ()
g ) Tt 1) JO 1ol eft) dAS (1)
Ctegn g LR C G
{sgn v} ¢ T ‘ r ! (‘1 — I-—} dA(1)

sodsgnrl e A E Y dsgnl AU ) o ),

which proves the thcorem. '

Let us remark that if A [2!]" is odd. then necessarily | |, (A di 1+ 4
uniformly for 0 -2« -2 b v (et [29, p. & 31, p. 31]: for a converse
result compare [32. p. 185] in the trigenometric case,

Concerning arbitrary functions A, we recall that cach Me) on & may be
decomposed into an cven part A, and odd part A, via

A & M=) A M)

5 3 Me) o Ao, (6.7)

M)
Thus one has as an immediate consequence.

Turorem 6.3, Let Me) o CAR) he an arbitrary function on R, and fet
AL and A, be its eren and odd part, respectivelv. If Ay = Bb. | and A, < BV
for some ~ - 0. o = 0, then Me) ¢ [LYR)]".

Let us observe that, apart from the usual differentiability properties, i
sufficient condition for A, (cf. (6.7)) to belong to BJ, ., is given by
ffl Pr D dAY ) < where for e o 0,0 0 - {cf. Part I, Section 3)

[

N d .
ALV lim - uy Ay (/uJ.

o dr i.i[‘(l - ) ! M

Concerning the condition A, <« B¥F /' it is suflicient (o show that (g > 0,
0<T~x-20 L0 -Us=0 D

I

dt = O(s°).

] [,\(r sy A ) ;‘(’)"'?‘ﬁ, ;rf)]
| (r-s) v

In this connection one may compare the foregoing with the following
result (in case n == 1) of Lofstrom [30] and Boman [26]. If A(v), defined and
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continuously differentiable on R — {0}, has compact support, and if there
exist constants C and y ~> 0 such that

NdldeY Moy, =< Cle " (reR —{0, A =0,1),
then A € [L1]". Now, let ¢ > 0 and consider the function
A(v) = {sgn ¢} log=1—<(1/] & 1) y(3r),

where y is given by (6.2). Then A is a continuous function with lim,_g A(r) == 0.
Since A does not satisfy a Lipschitz condition of any positive order (indeed,
lim, ., 17¥A(¢) -= = for any » = 0), the criterion of Boman-Lofstrém does
not work. However. A= BV for any ¢ ™ 0 so that Theorem 6.2 delivers
Aley s [L.

The proof of Theorem 6.2 is arranged 1n such a way that a formulation in
the general Banach space-frame of Section 2 (Part 1) is immediate. Indeed,
let £ be a spectral measure for the Hilbert space H on R, and let X be a
Banach space such that # N X is dense in A and X. If A is an odd function
on R and the operators (cf. Lemma 6.1)

s

(R, o, B), = I rysU/p) dEC), Fos ho,

'

a

are uniformly bounded on X for some , 8 = 0, then Az BVPY implies
/\([') e M.

6.2, BERNSTEIN-TYPE INFQUALITIES

In the terminology (for nn == 1) of Section 5.2 (Part 1), let B, , be the set
of entire functions f(z) of exponential type such that ' f(z) - Ae”+ and
flx == i0)e LXR) (in case p -= o we restrict to functions of class C,(R)).
With y as given by (6.2) consider for some « = 0

(i) x(v) == cos(maf2) v "> y(v) - sin(ma/2){isgn o} v x(vy I = 1,
(6.8)

say. Then there exists g € L! such that g™(¢} -= (it)* y(¢). Indeed, I, = [L']"
by Theorem 6.1, whereas

|7 e j(ddne (o) di < on,
“0

implies *Zy(r)e BV§/? and thus t*y(r) € BV§@22 so that 1,e[L']" by
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Theorem 6.2. Therefore, since [« B, , ™ B, , implies f "(¢) == O0for v - a
by the Paley-Wiener theorem, it follows that

IE el e | ) e de
cariaglacy s S, a gy s

for any fe B, , N B, ,. The extension to all of B, , may be performed
analogously to the procedure described in Section 5.2 (Part 1) by using a
decomposition corresponding to (6.8) and Theorems 6.1 and 6.2. Therefore,
interpreting Fourier transtorms in the distributional sense (cf. [26]).

COROLLARY 6.1, For x - 0 one has the Bernstein-type inequality
& ey @), constar [, (fe B, L)

In the standard manner this may be used to derive the classical Bernstein
inequality concerning trigonometric polynomials in, e.g., C,, . the space of
continuous, 2z-periodic functions. Indeed. setting (with g as given above)

2, (x) = Z ng((x - 2km)), L, "1 (k) = 2I7T | g (e du,

J S Yo
one has | g,* i1 < jgi; uniformly for ne N and [g,*]"(k) == g~(k[n)
(cf. [27. p. 2011]). Thus for any trigonometric polynomial 7,(x) -- Y%, ¢ e
and « > 0

'

B 4 . a i
S O R Iy WGy

Y. k) et 1
A

b — 1 2

In [[1] we considered BV, .,-spaces, and thus obtained this inequality only
for o« == 25,5 ¢ N. By the slight extension to BV {-spaces, however, the above
classical inequality is regained for any ~ = 0.
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