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In our previous studies (cL Part I and the literature referred to there; also
[28]) we derived a criterion for radial multipliers in connection with Riesz­
bounded spectral measures. The present paper is concerned with extensions
of the theory covering multipliers which are not necessarily radial. We shall
restrict the discussion to one-dimensional Fourier transforms (and
coefficients). Nevertheless, it would be possible to present these extensions
in the general Banach space-frame of Part 1. Indeed, the procedure will be
quite the same, exploiting the fact that the family of (Riesz means-) operators
{(R, a)pL>o (cf. Part I (3.1); this paper (6.1)) may be considered as a test set
for certain multiplier criteria.

6.1. MULTIPLIER CRITERIA

The situation is that of Section 5.2 for 11 ,= I, i.e., we deal with functions
fe' L"(~), 1 < p 00, and their Riesz means of order a

(R,\)pj(x) = (277)-1 rcr~ jt.y-- u) pbQ(pu) du
"-·:·D

pb~(p .) * j(x), (6.1)

* This paper is a sequel to one with the same title published in this journal Vol. 8,
pp. 335-356. The contents (and notations) of the first part are assumed to be known.
References are in alphabetical order in each paper; they, as well as the sections, are
numbered consecutively throughout this series. The contribution of W. Trebels was
supported by DFG-Grant Bu 166/23.
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where b" is given by its (distributional) Fourier transform

\(I···1vl)\ I

I 0 :,.
ep~(v)c. (27T)-1 rf ep(u)e- illl cIli.

"'-.-._.'y

(Note that In comparison with (3.1) we change the notation and write
1',- h,~.) Then it is well known that b, E LI (IR) for each (Y O. From this
we shall derive sufficient criteria for functions ,\(c) on IR to belong to [U(IR)r,
the set of U-transforms.

In fact, the case ,\ being an even function, i.e., A(I') ,\( 1'), is already
covered by our previous results.

THEOREM 6.1. LeI A(V)

this paper (6.3) )jor SOl1le,
C,,(IR) be even. ljI ,\ BV, 1 (et: Part f, (3.3),
. 0, then A(I') c [LI( IRW.

Next we consider odd functions A, i.e., ,\(1')

sgn v - ·1 for I 0, ·,,0 for I' 0, and I for v
of the following property of the Riesl kernel.

{sgn e} A( v l), where
O. Here we make use

LEMMA 6.1. 5'etting {sgn I}! v
each ex O. f3 ~, O.

Proof By Theorem 6.1 i v 2 b, A(V)

b~B(I') one has b,.iJ ~ U( IR) for

For some fIxed °< f3 2 this implies that

.c t1-IJ[b,,(x 31) 3h,(x t) 3b,(x t) h,{x - 31)] cit,

is Cauchy for E ~ 01 . Hence there exists Ii) L 1 such that

However,

lim
€-·O-i

0.

which implies f;t(v) ~. Clk i sgn v; i v I) h"A(e) with some constant CiJ.
Now the proof for arbitrary f3 0 is immediate. Indeed, with CX(IR) the
set of infinitely differentiable functions on IR, let (cf. Part I, Section 4.2)

X E C'c( IR) even with X(v) == I for i v I, ~O for VI 2. (6.2)

1 Of course, here and in the following the restriction of,\ to (0, Cfj) is meant in connection
with the moment spaces B V~v.~ .
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Then i v ,Y xCv) E [Ur for each y :> 0 by Theorem 6.1, and the proof is
complete.

Let us observe that h"s(x) ~-~ i(D{iJ}b~)-(;'(), the Hilbert transform of the

13th Riesz derivative of b" (cf. [27, Chapter Xl]).
1n connection with odd functions it is appropriate to consider the following

modification of the class B Voil (cf. Part I (3.3)) for ex, w, (J" °

with norm A j'BV(v.a == t-aA(tWBV U
) ,where (cf. [28])

I (t+l ' 0:+1

(6.3)

\\(t)cC(O ~.), 'I-i) \(~--llcAC (O~) 'l-d'''BI/ (0 ~J),/\ , c (),' UJ ~ 1\ , ••• , 1\ C loe ,v:..) ,/\ ,,-_ _ "Inc , , v~ ~

0;:+1
(6.4)

For the notations see Section 3 (Part I), in particular, for y = ,y - [eY],
[l:<] being the largest integer ';0" and ColO, w), the set of continuous functions
A(t) on (O,Xl) with liml~I Act) O. Note that BV;'1 C BVtl in the sense
of continuous embedding for all ° 13 eY, W 0, and that for any
.\ E B V;~)_l , ex, W 0. one has

(cf. [28], also Part I (3.5)), Moreover, AE BV;):~ implies

(6.5)

A(t/ )11 -- (v-a A(t)'!p B~/V,(J - P " iBVw,(J'
a+l all

(p 0), (6.6)

so that BV:~~-normsare invariant with respect to dilations. This is important
in connection with uniform bounds for multipliers of Fejer's type (i,e.,
AJt) = A(I/p)).

THEOREM 6.2. Let A(V) E Co(~) be odd. If AE Bv"a;~ for some eY :> 0,
u :> 0, then A(V) E [U(~)r.

Proof Setting Aa ( t) = t-aA( t) and

then g E U by Lemma 6.1; in fact, II gill < A cr •a II bo,a 11111 A IIBV:~~ .
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Moreover, by Fubini's theorem (cL this paper (6.5))

(-1 )le J 1 I"' ..' . ()
-r--(... - ---I) I' .uh~.v(r/I) dA,: (t)
.X • 0

{sgn /'J ; I'
, (--I )[' I 1., .' 1" (0)
. ----:-~1 I I (1 - ---) dA" (I)
T(,,)" I'· f

{sgn I; A( 1'1) 1\(1),

which proves the thcorem.
Let us remark that if II [Ur is odd. thcn necessarily J:: 1 1A(I) dl A

uniformly for 0 -<: (J b of. (cf. [29, p. 8; 31. p_ 31]): Cor a converse
result compare [32. p. 185] in the trigonometric case.

Concerning arbitrary functions,\, we recall that eaeh 1\(1') on may be
decomposed into an even part AI and odd part II~ via

,1(1')
A(r) -j- A(-I')

2
/\(1) ,\( 1')

2
(6.7)

alld leI

BV e
\

Thus one has as an immediate consequence.

THEOREM 6.3. LeI A(I') Col Iii) he ilil arhilrarr jililclioll Oil iK:.
Al (lmi A~ be ils ccell and odd pari, re.lpcetirell'. It' ,I] '= B i I atlll 1\
for somc'\' 0. IT 0, Ihell Afl") c [U( iR)j'.

Lct us observe that, apart from the usual dilTerentiabiiily properties, a
sufficient condition for Al (cf. (6.7)) to belong to B V, 1 is given by
J:J I' '! dN')(v)i y wherc for r O. 0 (cf. Part I. Section 3)

,j .I /'-,- II) 1\(1I} duJ.

Conccrning the condition II~ BV:·"j' il is sutllcicnl l,) show that (0 O.
O.\: () LOs \)

(
"1"1 II

-c; A(r)]" dl'

I"
O(.\iS).

In this connection one may comparc the foregoing wilh the following
result (in case Il 1) of Lofstrom [30] and Boman [26]. If A(v), defined and
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continuously differentiable on IR - {OJ, has compact support, and if there
exist constants C and y 0 such that

(d/dey' A(e)! <:; C I v (e E IR - {OJ, k = 0, I),

then AE [LI]A. Now, let E :> 0 and consider the function

Nu) = {sgn l'} log-h( I /1 v ) x(3r),

where X is given by (6.2). Then Ais a continuous function with lim,._,o ,\(1') O.
Since ,\ does not satisfy a Lipschitz condition of any positive order (indeed,
lim 10 t-:'A(I) - u~ for any yO), the criterion of Boman-LOfstrom does
not work. However. ,\ BV;·' for any iT 0 so that Theorem 6.2 delivers
,\(r) [Ur.

The proof of Theorem 6.2 is arranged in such a way that a formulation in
the general Banach space-frame of Section 2 (Part I) is immediate. Indeed,
let E be a spectral measure for the Hilbert space H on and leit X be a
Banach space such that H n X is dense in Hand X. If A is an odd function
on IR and the operators (ef. Lemma 6, I)

arc uniformly bounded on X for some , . .8
,\(r) eM.

I'

O. then i\ Be 1 implies

6.2. BERNSTEIN-TYPE INEQUALlTIES

In the terminology (for 11 I) of Section 5.2 (Part I), let B", II be the set
of entire functions f(;:) of exponential type such that 1(::.) Ae'l and
f(x- iO) E [1'OR:) (in case fI U~ we restrict to functions of class C,,(IR:)).
With X as given by (6.2) consider for some 0: 0

(ic)' xCv) .'.~ cos(7Tcx/2), r' xCv) -:- sin(7Tcx/2){i sgnv}! 1" X(I') r, ,
(6.8)

say. Then there exists g c U such that gA(U) ..~ (ic)' X(I'). Indeed, 11 [L1r
by Theorem 6.], whereas

( t1+(';~) I(d/dt)2 (t'~x(t)f £It < 00,
• 0
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Theorem 6.2. Therefore, sincefE B".I' (\ B".~ impliesf'(l')
by the Paley-Wiener theorem, it follows that

ofor I {) ! a

• I (f

II"
I

II

a' ag(a .),!" 0' gil I

for any fe B".I' (\ B",~. The extension to all of B",j may be performed
analogously to the procedure described in Section 5.2 (Part I) by using a
decomposition corresponding to (6.8) and Theorems 6. I and 6.2. Therefore,
interpreting Fourier transforms in the distributional sense (cf. [26]).

COROLLARY 6.1. For>: o one has the Bel'llstein-ll'pe inequality

const a' f (It: B".,,).

In the standard manner this may be used to derive the classical Bernstein
inequality concerning trigonometric polynomials in, e.g., C2 ,7' the space of
continuous. 27T-periodic functions. Indeed. setting (with g as given above)

g,,'(X) I ng(n(x· 2k7T», [g,/T(k)

one has gn* 11l.~r,1 g 11 uniformly for n (r~j and [g,,*nk) g~(kln)

(cf. [27, p. 20 I]). Thus for any trigonometric polynomiall,,(x) L~~ fi c/.e1kx

and n: 0

f UkY\ ('ke11.e II
h·~--!l Grr

In [11) we considered BV,\ I-spaces, anc! thus obtained this inequality only
for ex 2s, S fc N. By the slight extension to B V:i'{-spaces, however, the above
classical inequality is regained for any (y O.

REFERENCES

26. J. BO.\lAN, "Saturation Problems and Distribution Theory," Lecture Notes in Mathe­
matics, Vol. J87. Springer, Berlin, J971. 249-266.

27. P. L. BUTZER AND R. J, NESSEL, "Fourier Analysis and Approximation," "Vol. I:
One-dimensional Theory." Birkhauser, Basel, and Academic Press, New York, 1971,

28. P. L. BUTZER, R, .I, NESSEL, AND W, TREIlELS. On radial M,:' Fourier multipliers,
Math, Struct" Comput. Math., Math lv/odelling, Sofia, to appear,



MULTIPLIERS WITH RESPECT TO SPECTRAL MEASURES 29

29. R. R. GOLDBERG, "Fourier Transforms." Cambridge Univ. Press. Cambridge, England
1962.

30. J. UiFSTRiiM, Some theorems on interpolation spaces with applications to approxima­
tion in L". Math. Ann. 172 (1967), 176-196.

31. E. M. STEIN AND G. WEISS, "fntroductiOIl to Fourier Analysis on Euclidean Spaces."
Princeton Univ. Press, 1971.

32. A. ZYCMU1'iO, "Trigonometric Series," Vol. I, Cambridge, England, Cambridge Univ.
Press, 1959.


